Blaize - The Edge AI Chip Startup That Bet Against NVIDIA - $BZAI
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
-
Narrado por:
-
De:
In the fierce AI chip race dominated by NVIDIA’s data center juggernauts, Blaize Holdings has charted a bold, contrarian path by pioneering AI hardware tailored for the edge—where low power, real-time decision-making, and embedded intelligence reign supreme. Emerging from stealth in 2019 after years of bootstrapped development and strategic partnerships with automotive giants like DENSO and Mercedes-Benz, Blaize recently went public via a SPAC. For listeners intrigued by the future of decentralized intelligence and the gritty realities of deep-tech semiconductor innovation, Blaize’s long journey from stealth to scale offers a captivating glimpse into how the next frontier of AI computing may unfold.
Transcript - https://empor.top/us/BZAI
- I. Introduction: A Contrarian Bet in the AI Arms Race
- II. Founding Story: The Intel Exodus (2010-2014)
- III. The Stealth Years: Building the GSP Architecture (2014-2019)
- IV. Emerging from Stealth: The Blaize Rebrand (November 2019)
- V. The GSP Chip Launch & Product Development (2020-2022)
- VI. Strategic Funding & Automotive Partnerships (2021-2023)
- VII. The SPAC Deal: Going Public via BurTech (2023-2025)
- VIII. Technology Deep Dive: The Graph Streaming Processor
- IX. The Global Expansion Strategy (2024-2025)
- X. Playbook: Business & Strategy Lessons
- XI. Competitive Landscape & Porter's Five Forces Analysis
- XII. Hamilton's 7 Powers Analysis
- XIII. Bear vs. Bull Case
- XIV. KPIs to Watch
- Conclusion: The Long Road from Stealth to Scale
Todavía no hay opiniones