
#363 ‒ A new frontier in neurosurgery: restoring brain function with brain-computer interfaces, advancing glioblastoma care, and new hope for devastating brain diseases | Edward Chang, M.D.
No se pudo agregar al carrito
Add to Cart failed.
Error al Agregar a Lista de Deseos.
Error al eliminar de la lista de deseos.
Error al añadir a tu biblioteca
Error al seguir el podcast
Error al dejar de seguir el podcast
-
Narrado por:
-
De:
View the Show Notes Page for This Episode
Become a Member to Receive Exclusive Content
Sign Up to Receive Peter’s Weekly Newsletter
Edward Chang is a neurosurgeon, scientist, and a pioneering leader in functional neurosurgery and brain-computer interface technology, whose work spans the operating room, the research lab, and the engineering bench to restore speech and movement for patients who have lost these capabilities. In this episode, Edward explains the evolution of modern neurosurgery and its dramatic reduction in collateral damage, the experience of awake brain surgery, real-time mapping to protect critical functions, and the split-second decisions surgeons make. He also discusses breakthroughs in brain-computer interfaces and functional electrical stimulation systems, strategies for improving outcomes in glioblastoma, and his vision for slimmer, safer implants that could turn devastating conditions like ALS, spinal cord injury, and aggressive brain tumors into more manageable chronic illnesses.
We discuss:
- The evolution of neurosurgery and the shift toward minimally invasive techniques [2:30];
- Glioblastomas: biology, current treatments, and emerging strategies to overcome its challenges [10:45];
- How brain mapping has advanced from preserving function during surgery to revealing how neurons encode language and cognition [16:30];
- How awake brain surgery is performed [22:00];
- How brain redundancy and plasticity allow some regions to be safely resected, the role of the corpus callosum in epilepsy surgery, and the clinical and philosophical implications of disconnecting the hemispheres [26:15];
- How neural engineering may restore lost functions in neurodegenerative disease, how thought mapping varies across individuals, and how sensory decline contributes to cognitive aging [39:15];
- Brain–computer interfaces explained: EEG vs. ECoG vs. single-cell electrodes and their trade-offs [48:30];
- Edward’s clinical trial using ECoG to restore speech to a stroke patient [1:01:00];
- How a stroke patient regained speech through brain–computer interfaces: training, AI decoding, and the path to scalable technology [1:10:45];
- Using brain-computer interfaces to restore breathing, movement, and broader function in ALS patients [1:28:15];
- The 2030 outlook for brain–computer interfaces [1:34:00];
- The potential of stem cell and cell-based therapies for regenerating lost brain function [1:38:00];
- Edward’s vision for how neurosurgery and treatments for glioblastoma, Parkinson’s disease, and Alzheimer’s disease may evolve by 2040 [1:42:15];
- The rare but dangerous risk of vertebral artery dissections from chiropractic neck adjustments and high-velocity movements [1:44:45];
- How Harvey Cushing might view modern neurosurgery, and how the field has shifted from damage avoidance to unlocking the brain’s functions [1:46:15]; and
- More.
Connect With Peter on Twitter, Instagram, Facebook and YouTube