Time Series Analysis Audiolibro Por Ajit Singh arte de portada

Time Series Analysis

Muestra de Voz Virtual
Prueba por $0.00
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.

Time Series Analysis

De: Ajit Singh
Narrado por: Virtual Voice
Prueba por $0.00

Escucha con la prueba gratis de Plus

Compra ahora por $6.50

Compra ahora por $6.50

Background images

Este título utiliza narración de voz virtual

Voz Virtual es una narración generada por computadora para audiolibros..
"Time Series Analysis: From Classical Methods to Modern Machine Learning" is a comprehensive, practical, and accessible guide for students and professionals seeking to master the art and science of forecasting. In today's data-driven world, the ability to analyze time-dependent data is a critical skill across industries—from finance and engineering to retail and climate science. This book provides a seamless learning pathway, taking you from the foundational principles of time series analysis to the cutting-edge of deep learning.

Key Features of This Book:


1. Progressive Learning Path: Logically progresses from simple statistical methods to advanced deep learning models, building a strong conceptual foundation.
2. Hands-On Python Practicals: Every chapter includes detailed, step-by-step code implementations using popular libraries like Pandas, Statsmodels, Scikit-learn, and TensorFlow/PyTorch.
3. Real-World Datasets and Use Cases: Learn using practical examples from retail, finance, energy, and environmental science, making the concepts tangible and relevant.
4. Intuitive Explanations: Complex mathematical and algorithmic concepts are broken down into simple, easy-to-understand terms with helpful visualizations and analogies.
5. Complete End-to-End Capstone Project: A full chapter dedicated to a comprehensive project that integrates all the skills learned throughout the book into a single, cohesive workflow.
6. Focus on Both "Why" and "How": Balances theoretical understanding with practical implementation, empowering you to not only use models but to know which model to use and why.



Each chapter is crafted as a self-contained module with clear learning outcomes. Well. I start with a theoretical foundation, explained in the simplest possible terms using relatable analogies—from predicting café footfall to forecasting your monthly mobile data usage. This is immediately followed by hands-on practical sessions using Python, the de facto language of data science. I leverage popular, open-source libraries such as pandas, statsmodels, scikit-learn, TensorFlow, and PyTorch, ensuring that the skills you acquire are current, in-demand, and directly transferable to industry challenges.
Todavía no hay opiniones