
Time Series Analysis
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.50
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh

Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features of This Book:
1. Progressive Learning Path: Logically progresses from simple statistical methods to advanced deep learning models, building a strong conceptual foundation.
2. Hands-On Python Practicals: Every chapter includes detailed, step-by-step code implementations using popular libraries like Pandas, Statsmodels, Scikit-learn, and TensorFlow/PyTorch.
3. Real-World Datasets and Use Cases: Learn using practical examples from retail, finance, energy, and environmental science, making the concepts tangible and relevant.
4. Intuitive Explanations: Complex mathematical and algorithmic concepts are broken down into simple, easy-to-understand terms with helpful visualizations and analogies.
5. Complete End-to-End Capstone Project: A full chapter dedicated to a comprehensive project that integrates all the skills learned throughout the book into a single, cohesive workflow.
6. Focus on Both "Why" and "How": Balances theoretical understanding with practical implementation, empowering you to not only use models but to know which model to use and why.
Each chapter is crafted as a self-contained module with clear learning outcomes. Well. I start with a theoretical foundation, explained in the simplest possible terms using relatable analogies—from predicting café footfall to forecasting your monthly mobile data usage. This is immediately followed by hands-on practical sessions using Python, the de facto language of data science. I leverage popular, open-source libraries such as pandas, statsmodels, scikit-learn, TensorFlow, and PyTorch, ensuring that the skills you acquire are current, in-demand, and directly transferable to industry challenges.
Todavía no hay opiniones