株式会社ずんだもん技術室AI放送局 podcast 20250626 Podcast Por  arte de portada

株式会社ずんだもん技術室AI放送局 podcast 20250626

株式会社ずんだもん技術室AI放送局 podcast 20250626

Escúchala gratis

Ver detalles del espectáculo

Acerca de esta escucha

関連リンク Gemini CLI: your open-source AI agent Googleは、開発者向けに「Gemini CLI(Command Line Interface)」という新しいオープンソースのAIエージェントを発表しました。これは、GoogleのAIモデルであるGeminiの強力な機能を、皆さんが普段利用しているターミナル(コマンドライン)で直接使えるようにするツールです。 このツールの最大の目的は、開発者の作業を効率化することにあります。コードの生成、プログラムの問題解決(デバッグ)、情報検索、日々のタスク管理など、様々な開発作業をAIの力を借りてよりスムーズに進められるようになります。 Gemini CLIの主な特徴は以下の通りです。 オープンソースであること: Apache 2.0ライセンスで公開されており、誰でもコードの中身を確認したり、開発に貢献したりできます。これにより、ツールの透明性が高く、セキュリティ面でも安心して利用できます。また、開発者が自分のニーズに合わせて機能を拡張できる柔軟性も持っています。Gemini 2.5 Proモデルへのアクセス: 最先端のGemini 2.5 Proモデルを利用でき、100万トークンという非常に大きなコンテキストウィンドウ(一度に扱える情報量)を持つため、複雑なリクエストにも対応できます。充実した無料利用枠: 個人の開発者は、個人用のGoogleアカウントでサインインし、Gemini Code Assistの無料ライセンスを利用することで、1分あたり60リクエスト、1日あたり1,000リクエストまで無料でGemini CLIを使うことができます。これは業界でもトップクラスの利用量です。多様な機能連携: Google検索と連携してリアルタイムな情報を取得し、プロンプトの回答精度を高める「グラウンディング」機能や、独自の拡張機能を追加できる仕組み(Model Context Protocol)も備わっています。また、プロンプトや指示をカスタマイズしたり、スクリプトに組み込んで作業を自動化したりすることも可能です。 さらに、Gemini CLIはGoogleのAIコーディングアシスタント「Gemini Code Assist」と同じ技術基盤を共有しています。これにより、VS Codeなどの統合開発環境(IDE)でも、Gemini CLIと同様の強力なAIエージェント機能(例えば、複雑なタスクを複数ステップで計画・実行する「エージェントモード」)が利用でき、ターミナルとIDEの両方でシームレスなAI開発体験が得られます。 この新しいツールは簡単に導入でき、日々の開発作業を大きく変える可能性を秘めています。 引用元: https://blog.google/technology/developers/introducing-gemini-cli-open-source-ai-agent/ MUVERA: Making multi-vector retrieval as fast as single-vector search このGoogleの研究ブログ記事は、情報検索(IR)の分野で使われる「マルチベクトル検索」を高速化する新しい技術「MUVERA」について紹介しています。情報検索は、膨大なデータの中からユーザーが知りたい情報(例えばLLM(大規模言語モデル)の「RAG(Retrieval Augmented Generation)」機能で使う知識など)を素早く見つけ出すための重要な技術です。 最近の情報検索では、文章などをコンピュータが扱いやすい数値の並び「ベクトル(埋め込み)」に変換して、ベクトル同士の似ている度合い(類似度)を計算することで、関連する情報を探すのが一般的です。これまでの「単一ベクトル検索」は、一つのデータに一つのベクトルを割り当て、高速に検索できましたが、情報が複雑になると検索の精度に限界がありました。 そこで、より高度な「マルチベクトルモデル」が登場しました。これは、一つのデータに対して複数のベクトルを生成することで、よりきめ細かく情報を表現でき、検索精度を大きく向上させることができます。しかし、たくさんのベクトルを扱い、複雑な方法で類似度(「Chamfer類似度」など)を計算するため、検索に時間がかかってしまうという課題がありました。 MUVERA(Multi-Vector Retrieval via Fixed Dimensional Encodings)は、この「マルチベクトル検索は精度が高いけれど遅い」という問題を解決するための技術です。MUVERAは、複雑なマルチベクトルの情報を「FDE(Fixed Dimensional Encoding)」という、たった一つのシンプルな単一ベクトルに変換します。このFDEは、元のマルチベクトル間の複雑な類似度を、単一ベクトルで使...
Todavía no hay opiniones