
In-Memory Computing
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
$0.00 por los primeros 30 días
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $8.50
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh

Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features:
1. Beginner to Advanced Trajectory: The content is structured to cater to both undergraduate students new to the topic and postgraduate learners seeking in-depth knowledge.
2. Hands-On Approach: Every major concept is paired with practical examples, code snippets, and step-by-step tutorials to reinforce learning and build practical skills.
3. Real-World Case Studies: Explores how leading industries like finance, e-commerce, and telecommunications leverage In-Memory Computing to solve critical business problems.
4. Simple and Lucid Language: Complex architectural and programming concepts are explained in an easy-to-understand manner with clear diagrams and relatable analogies.
5. Comprehensive Platform Coverage: Provides a balanced overview and practical implementation guides for leading open-source IMC technologies, including In-Memory Data Grids and Databases.
6. NEP 2020 & AICTE Aligned: Emphasizes conceptual understanding, critical thinking, and experiential learning through hands-on labs and a capstone project.
7. End-to-End Capstone Project: A full final chapter is dedicated to building a complete, real-world application, integrating various concepts learned throughout the book, and includes the complete, explained source code.
To Whom This Book is For:
This book is an essential resource for a wide spectrum of learners and professionals:
1. B.Tech/B.E. Students: Undergraduate students in Computer Science, Information Technology, and related engineering disciplines studying courses on Database Management Systems, Distributed Systems, and Big Data Analytics.
2. M.Tech/M.E. Students: Postgraduate students and research scholars specializing in high-performance computing, data science, and advanced software architecture.
3. Aspiring Data Engineers and Data Scientists: Individuals looking to build a strong foundation in the technologies that power real-time data pipelines and analytics.
4. Software Developers and Architects: Professionals who want to design and build scalable, low-latency applications and microservices.
5. IT Professionals and System Administrators: Individuals responsible for deploying, managing, and optimizing high-performance data infrastructure.
6. Faculty and Academicians: Educators seeking a comprehensive, modern, and practical textbook for their curriculum that aligns with the latest educational policies.
The book's core philosophy is to simplify complex concepts and empower readers to build high-performance, data-intensive applications. It begins with the absolute fundamentals, explaining why In-Memory Computing is essential in today's data-driven landscape, and progresses logically through core architectural principles, deep dives into industry-leading platforms like Apache Ignite, Hazelcast, and Redis, and advanced topics such as stream processing and machine learning acceleration. The journey culminates in a complete capstone project where readers will build a live, working real-time fraud detection system from scratch.
Todavía no hay opiniones