Artificial Intelligence for Excel Audiolibro Por Ajit Singh arte de portada

Artificial Intelligence for Excel

Architecture, Models, and Implementation

Muestra de Voz Virtual

$0.00 por los primeros 30 días

Prueba por $0.00
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.

Artificial Intelligence for Excel

De: Ajit Singh
Narrado por: Virtual Voice
Prueba por $0.00

Escucha con la prueba gratis de Plus

Compra ahora por $6.90

Compra ahora por $6.90

Obtén 3 meses por US$0.99 al mes

Background images

Este título utiliza narración de voz virtual

Voz Virtual es una narración generada por computadora para audiolibros..
"Artificial Intelligence for Excel: Architecture, Models, and Implementation" is a comprehensive textbook designed to revolutionize the way Computer Science students and professionals approach Data Science. In an era where Artificial Intelligence (AI) is redefining industries, this book serves as a crucial bridge, connecting the theoretical rigor of academic computer science with the practical, ubiquitous utility of Microsoft Excel.


Why This Book?

While many books teach AI using complex IDEs like PyCharm or Jupyter Notebooks, they often alienate beginners. Conversely, Excel books rarely touch upon deep tech. This book sits in the "Goldilocks Zone"—technically robust enough for a Master’s degree curriculum, yet accessible enough for a beginner. It empowers the reader to say, "I can build an AI model today," using the tools they already have.


Key Features:


This book is distinguished by the following features, designed to cater to B.Tech/M.Tech students and global learners:
Curriculum

1. Compatibility: The content maps directly to standard university syllabi for "Artificial Intelligence," "Machine Learning," and "Data Analytics," making it an ideal course textbook.
2. Architecture-First Approach: Unlike standard Excel books, this text explains the System Design. It covers API integration, Cloud Computing (Azure/AWS), and the internal architecture of how Excel processes Python scripts.
3. Python in Excel Integration: Dedicated chapters cover the latest technological breakthrough—running Python natively within Excel cells—allowing users to leverage libraries like pandas, matplotlib, and scikit-learn without complex setups.
4. No-Code & Low-Code AI: For beginners, the book demonstrates Excel’s built-in AI features (Analyze Data, Forecast Sheets) and add-ins that require zero coding.
5. Visual Learning: The book is packed with architectural diagrams, flowcharts, and screenshots to explain the "Black Box" of AI functioning.
6. Capstone Project: A full DIY project in the final chapter ensures the learner can build a deployable product from scratch.


Target Audience:

1. B.Tech / M.Tech Computer Science Students: For understanding the practical application of ML algorithms and system architecture.
2. Data Analysts & Business Intelligence Professionals: For upgrading skills from basic reporting to predictive modeling.
3. Research Scholars: For utilizing Excel as a rapid prototyping tool for data models.
4. MBA / Management Students: To understand the business applications of AI without needing deep coding expertise.
Informática Matemáticas Ciencia de datos Aprendizaje automático Inteligencia artificial Programación Tecnología
Todavía no hay opiniones