
AI for Materials Science
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
$0.00 por los primeros 30 días
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.30
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh

Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features of the Book:
1. Beginner to Advanced Coverage: The book follows a logical progression, starting with fundamental concepts for absolute beginners and gradually building up to advanced, state-of-the-art topics, making it suitable for a wide range of learners.
2. Practical, Hands-On Approach: Heavy emphasis is placed on "learning by doing." The book is packed with hands-on coding exercises, practicals, and mini-projects that reinforce theoretical concepts.
3. Interdisciplinary Focus: It is carefully designed to be accessible to students from various branches of engineering, including Materials, Mechanical, Chemical, and Computer Science, by providing the necessary background for each domain.
4. Capstone Project-Based Learning: The final chapter is a comprehensive, live capstone project that integrates all the concepts learned throughout the book. It includes a complete, well-explained codebase for solving a real-world material design problem.
5. Modular and Structured: With 10 well-defined chapters, the book can be easily adapted for a one-semester course. Each chapter includes learning objectives, summaries, and review questions to aid in structured learning.
6. Industry-Relevant Case Studies: Features contemporary case studies on high-impact areas like renewable energy (solar cells, batteries), sustainable materials, high-performance alloys, and drug delivery systems.
7. Focus on Open-Source Tools: Empowers students by teaching them to use powerful, industry-standard, and freely available Python libraries for data analysis, machine learning, and materials informatics.
The book’s core objective is to move beyond theoretical discussions and provide a hands-on learning experience. It guides the reader from the foundational concepts of both AI and materials science to the application of sophisticated algorithms for predicting material properties, discovering new compounds, and optimizing manufacturing processes. The content is presented in a lucid, step-by-step manner, making complex topics like deep learning, generative models, and graph neural networks intuitive and understandable.
Todavía no hay opiniones